3.6.46 \(\int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx\) [546]

Optimal. Leaf size=181 \[ \frac {(2 A-B) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}-\frac {\sqrt {2} (A-B) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {B \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \]

[Out]

(2*A-B)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d/a^(1/2)-(A-B)*a
rctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2)*cos(d*x+c)^(1/2)*sec(d*
x+c)^(1/2)/d/a^(1/2)+B*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.33, antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3034, 4106, 4108, 3893, 212, 3886, 221} \begin {gather*} -\frac {\sqrt {2} (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {(2 A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {B \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

((2*A - B)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sq
rt[a]*d) - (Sqrt[2]*(A - B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]
])]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + (B*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec
[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3034

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Csc[e + f*x])^m*((
c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 3893

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*b*(d/
(a*f)), Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4106

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(f*(m +
n))), x] + Dist[d/(b*(m + n)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)*Simp[b*B*(n - 1) + (A*b*(m
+ n) + a*B*m)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 -
 b^2, 0] && GtQ[n, 1]

Rule 4108

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx\\ &=\frac {B \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (\frac {a B}{2}+\frac {1}{2} a (2 A-B) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{a}\\ &=\frac {B \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}-\left ((A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx+\frac {\left ((2 A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx}{2 a}\\ &=\frac {B \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {\left (2 (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}-\frac {\left ((2 A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a d}\\ &=\frac {(2 A-B) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}-\frac {\sqrt {2} (A-B) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {B \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.52, size = 114, normalized size = 0.63 \begin {gather*} -\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \left (2 (A-B) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos (c+d x)-\sqrt {2} (2 A-B) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos (c+d x)-2 B \sin \left (\frac {1}{2} (c+d x)\right )\right )}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a (1+\sec (c+d x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

-((Cos[(c + d*x)/2]*(2*(A - B)*ArcTanh[Sin[(c + d*x)/2]]*Cos[c + d*x] - Sqrt[2]*(2*A - B)*ArcTanh[Sqrt[2]*Sin[
(c + d*x)/2]]*Cos[c + d*x] - 2*B*Sin[(c + d*x)/2]))/(d*Cos[c + d*x]^(3/2)*Sqrt[a*(1 + Sec[c + d*x])]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(342\) vs. \(2(152)=304\).
time = 12.68, size = 343, normalized size = 1.90

method result size
default \(-\frac {\left (-1+\cos \left (d x +c \right )\right ) \left (2 A \cos \left (d x +c \right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )+2 A \cos \left (d x +c \right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )-B \cos \left (d x +c \right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )-B \cos \left (d x +c \right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )-4 A \cos \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right )+2 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+4 B \cos \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{2 d \sqrt {\cos \left (d x +c \right )}\, \sin \left (d x +c \right )^{2} \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, a}\) \(343\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/d*(-1+cos(d*x+c))*(2*A*cos(d*x+c)*2^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*
2^(1/2))+2*A*cos(d*x+c)*2^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(-1-cos(d*x+c)+sin(d*x+c))*2^(1/2))-B*cos
(d*x+c)*2^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))-B*cos(d*x+c)*2^(1/2)*a
rctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(-1-cos(d*x+c)+sin(d*x+c))*2^(1/2))-4*A*cos(d*x+c)*arctan(1/2*sin(d*x+c)*(
-2/(1+cos(d*x+c)))^(1/2))+2*B*(-2/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+4*B*cos(d*x+c)*arctan(1/2*sin(d*x+c)*(-2/(1
+cos(d*x+c)))^(1/2)))*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2)/sin(d*x+c)^2/(-2/(1+cos(d*x+c)))^(1
/2)/a

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 1509 vs. \(2 (152) = 304\).
time = 0.98, size = 1509, normalized size = 8.34 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/4*(2*(sqrt(2)*log(cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x +
c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 1) - sqrt(2)*log(cos(1/2*arctan2(sin(d*x + c), cos(d
*x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))
+ 1) - log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2
 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x +
c))) + 2) + log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c
)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d
*x + c))) + 2) - log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*
x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c),
cos(d*x + c))) + 2) + log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), c
os(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x +
 c), cos(d*x + c))) + 2))*A/sqrt(a) + (4*sqrt(2)*cos(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*
x + 2*c) - 4*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) + (cos(2*d*x + 2*c)
^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2
 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - (cos(2*d*x + 2*c)^2 + s
in(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*s
in(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c))) - 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d
*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
)) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2
*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 2
*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*s
in(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c)))^2 + sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c))) + 1) + 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sq
rt(2))*log(cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c)))^2 - 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 4*(sqrt(2)*cos(2*d*x + 2*c) + sqr
t(2))*sin(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/4*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*B/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
 1)*sqrt(a)))/d

________________________________________________________________________________________

Fricas [A]
time = 3.18, size = 575, normalized size = 3.18 \begin {gather*} \left [\frac {4 \, B \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left ({\left (2 \, A - B\right )} \cos \left (d x + c\right )^{2} + {\left (2 \, A - B\right )} \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} + 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) - \frac {2 \, \sqrt {2} {\left ({\left (A - B\right )} a \cos \left (d x + c\right )^{2} + {\left (A - B\right )} a \cos \left (d x + c\right )\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{4 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}}, \frac {2 \, \sqrt {2} {\left ({\left (A - B\right )} a \cos \left (d x + c\right )^{2} + {\left (A - B\right )} a \cos \left (d x + c\right )\right )} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) + 2 \, B \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left ({\left (2 \, A - B\right )} \cos \left (d x + c\right )^{2} + {\left (2 \, A - B\right )} \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{2 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*B*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - ((2*A - B)*cos(d*x + c)^2
+ (2*A - B)*cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 + 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(c
os(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)
) - 2*sqrt(2)*((A - B)*a*cos(d*x + c)^2 + (A - B)*a*cos(d*x + c))*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt((a*cos
(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2
*cos(d*x + c) + 1))/sqrt(a))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c)), 1/2*(2*sqrt(2)*((A - B)*a*cos(d*x + c)^2
 + (A - B)*a*cos(d*x + c))*sqrt(-1/a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(c
os(d*x + c))/sin(d*x + c)) + 2*B*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + ((2
*A - B)*cos(d*x + c)^2 + (2*A - B)*cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x
+ c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(a*d*cos(d*x + c)^2 + a*d*co
s(d*x + c))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A + B \sec {\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)**(3/2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))/(sqrt(a*(sec(c + d*x) + 1))*cos(c + d*x)**(3/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)/(sqrt(a*sec(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^(1/2)),x)

[Out]

int((A + B/cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________